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Introduction:

Our project investigates the factors contributing to traffic collisions in California,
using a massive (~5,000,000 observations) dataset provided by the California
Highway Patrol, and sourced from Kaggle. This dataset spans nearly two decades,
from 2001 to 2020, and includes detailed information on collisions, parties involved,
and victims, however, we mainly focused on the last year of data. We explored
several analytical questions, each focusing on different aspects of traffic collisions,
such as the severity of injuries, the impact of Daylight Saving Time (DST) on
collisions, and the likelihood of alcohol involvement in collisions given other
factors.

We were particularly interested in understanding how various factors like time of
day, weather conditions, and vehicle types affect the severity and frequency of
collisions. Our motivation was a curiosity to understand collisions, and maybe gain
some insights on how to avoid them in our own personal lives, and just to learn
something new about public safety and traffic, and maybe even find out how to
prevent collisions from a civil engineering standpoint.

Dataset Description:

This data comes from the California Highway Patrol and covers collisions from
January 1st, 2001 until mid-December, 2020 with no post-processing. These are full
database dumps from the CHP five times, once in 2016, 2017, 2018, 2020, 2021.
(according to the publisher/author of the dataset). Each year, there are three
separate datasets: collisions, parties involved, and victims involved.

(ii. a&b) Key Features (Observational Units):

Collisions: Includes information on each collision, such as date, time, location,
collision type, weather conditions, road conditions, lighting, and collision severity.

Parties Involved: Contains data on all parties involved in each collision, including
vehicle types, driver details, age, gender, sobriety, and reasons for the collision.



Victims Involved: Details the victims in each collision, including injury severity, age,
gender, seat position, safety equipment used, and other information.

Below we included a link from the author of the dataset which displays the columns
with their respective names and possible values in an organized table. The
observational units above are only a few of the important ones. A full list is provided
in the data dictionary below.

(ii. c) Overall Size:

There are a lot of rows in this dataset (around 5 million). However, due to the big
size we may have to reduce the data in this dataset to fit it into colab without
running out of the cloud's memory. The attributes are listed in the data dictionary.
The missing values are already assigned to a certain value that is listed in the data
dictionary. The specific ways we reduced our data are in each question design.

(b) Data Preparation:

We will merge the data by CaseID so we will have access to all the data in one single
dataframe and it will give us a holistic view of each traffic collision event. Note:
There are specific data preparation steps described in each question.

Data Dictionary:
https://docs.google.com/document/d/1RxeKcv0GZVyPS-__EcUg_JGke3aKGlO2/
edit?usp=sharing&ouid=110364097269444718069&rtpof=true&sd=true

Actual Dataset Link:
https://www.kaggle.com/datasets/alexgude/california-traffic-collision-raw-switr
s-data

https://docs.google.com/document/d/1RxeKcv0GZVyPS-__EcUg_JGke3aKGlO2/edit?usp=sharing&ouid=110364097269444718069&rtpof=true&sd=true
https://docs.google.com/document/d/1RxeKcv0GZVyPS-__EcUg_JGke3aKGlO2/edit?usp=sharing&ouid=110364097269444718069&rtpof=true&sd=true
https://docs.google.com/document/d/1RxeKcv0GZVyPS-__EcUg_JGke3aKGlO2/edit?usp=sharing&ouid=110364097269444718069&rtpof=true&sd=true
https://www.kaggle.com/datasets/alexgude/california-traffic-collision-raw-switrs-data
https://www.kaggle.com/datasets/alexgude/california-traffic-collision-raw-switrs-data


Exploratory Data Analysis:

Question 1�

EDA on Distribution of Severity Levels

Figure 1.2.1� Distribution of Severity Levels.

We can see that we have extremely severe
class imbalance. The worst severity levels
are extremely underrepresented in the
dataset.

EDA on Collision Severity in Relation to Categorical Collision Conditions:

For our categorical predictor variables we plotted them against our categorical target
variable in the following fashion. Given a predictor feature X and a target feature Y: For
each level of X (let us call it x) and for each Level of Y (call it y) calculate the following
probability function: . If this value is 0, there is no correlation, and if it is positive,ln 𝑃(𝑦 | 𝑥)

𝑃(𝑦)( )
this level of X positively correlates with the level of Y.

Figure 1.2.2.1� Correlation between Day of
week and Collision Severity

This plot shows us that on the weekends,
a collision is more likely to result in death
than on any other day.



Figure 1.2.2.3� Correlation between Lighting of week and Collision Severity

Darker streets, quite logically, are a lot
more likely to host deadly collisions.

Figure 1.2.2.4� Correlation between the
Object Collided With and Collision
Severity

When someone hits a train ( for example
if they linger on the tracks), there is a
high chance of death. When someone hits
a parked vehicle, there is a low chance of
death (maybe because you mostly hit
parked cars in parking lots at low speed)

EDA on Collision Severity in Relation to Numerical Collision Conditions:

For our only numeric variable: minute of day, we performed a similar analysis as for the
categorical variables. For each minute of the day, we calculated how that affects the
chances of death (and the other Severity levels), in a similar fashion, and plotted that on a
graph:



Figure 1.2.3� Probability of death and other
severity levels vs the minute of day.

The solid line is a heavily smoothed
version of the day (moving window
average), and the translucent scatterplot
is less smoothed, to give an idea of the
data variability.

We can see that the chances of death
during the day: ~6 AM to ~5 PM are lower
than those during the night.

Question 2�

Figure 2.1� Graph of frequency vs. the hour of the day (selected from training set)

The graphs above show a histogram of hours of the day vs. the frequency of crashes,
with the graph on the right being a remapped version of the time of day. This was
done to create a better visualization for the frequency of crashes with alcohol, because
it made more sense to have the time go simply from morning to night, rather than
from night to day to night.



It was also found that the day of the week
had a noticeable relationship with the
frequency of alcohol-related collisions,
increasing from Monday to Sunday.

Out of all of the numeric variables examined
for this question, the hour of the day (mainly
the remapped version) and day of the week
were found to have the strongest correlations
with alcohol involvement.

The categorical variables were not found to
have any significant relationships with the involvement of alcohol, but the ones with
stronger relationships were used in the second round of model training.

Question 3�

We uncovered the patterns and
trends of the frequency of collisions
over the past decade. Using that, we
were able to predict the “future”
collision frequencies.

We also uncovered the most accident
prone location: the area around
California State Route 60 and Grand
Avenue in Diamond Bar, LA.

Figure 3.6 - Collision Frequency Prediction

YEAR PRIMARY_RD SECONDARY_RD COUNT

2009 RT 60 GRAND AV 325

2010 RT 60 GRAND AV 349

2011 RT 60 GRAND AV 353

2012 RT 60 GRAND AV 343

2013 RT 60 GRAND AV 377



2014 RT 60 GRAND AV 371

2015 RT 15 RT 138 230

2016 SR-60 W/B (POMONA FREEWAY) GRAND AVE 283

2017 SR-60 W/B (POMONA FWY) GRAND AVE 202

2018 SR-60 W/B (POMONA FWY) GRAND AVE 205

2019 SR-60 W/B (POMONA FWY) GRAND AVE 223

Table 3.9 - Top Accident-Prone Location by Year

* This is just a preview. Full details are included in the Results section of Question 3.

Questions 4�

One of the initial steps for these two questions was to visualize the distribution of
traffic collisions over time. We plotted the number of collisions on a monthly basis
and created histograms to examine how collision frequency varied across different
periods. This allowed us to observe fluctuations in collision frequency and better
understand the temporal patterns in the data.

We also investigated the severity of collisions across the dataset. By generating
count plots to visualize the distribution of collision severity, we were able to see
how often different severity levels occurred.

Additionally, we examined the impact of weather conditions and road surface states
on traffic collisions. We visualized the distribution of collisions under various
weather conditions and road surface states and identified times when adverse
weather and poor road conditions were more common. This analysis emphasized
the need to include weather and road surface conditions as features, as they are
likely to influence collision risk.

In terms of data quality, we conducted detailed cleaning. We performed value
counts on the features, which helped us identify and address instances of random
or incorrectly formatted data. We matched our data to the official SWITRS data
dictionary, replacing or correcting values as needed. This included standardizing
unknown or out-of-range values to "UNKNOWN" to maintain consistency across
the dataset.



Question 1 - Notebook

1. Analytical Question

“Predict the severity of injuries in traffic collisions based on factors like time of
day, vehicle type, and weather conditions.”

The goal is, given the conditions of a collision, be able to predict a general
idea of if the collision is deadly, or if they will walk away with a bit of pain.

2. Design

Instead of trying to quantify the injury severity in a more descriptive way, we
will be predicting the categorical variable COLLISION_SEVERITY, which has
five levels and describes the severity of the worst injury suffered in the
collision. This is a classification problem with mostly categorical predictor
variables.

All data is taken from the California Traffic Collision Raw SWITRS Dataset.
These are the features:

a. Daytime:
i. COLLISION_TIME

1. Note: in the original dataset, this variable is in HHMM
format, we will have to preprocess it to convert into
minutes since midnight (so that it is continuous: no jump
from 1959 to 2000)

ii. DAY_OF_WEEK

iii. LIGHTING

b. Conditions:
i. WEATHER_1 & WEATHER_2

ii. ROAD_SURFACE, ROAD_COND_1

c. Vehicles Involved:
i. Motor Vehicle Involved With (MVIW)
ii. Statewide Vehicle Type At Fault (STWD_VEHTYPE_AT_FAULT)

https://colab.research.google.com/drive/1c2zWJPWylt12EXmwaw6AUYLokXgPIpFj?usp=sharing#scrollTo=9NiGLZ6qBmsD


We only need to take data from collisionrecords.txt so no merging of
dataframes is necessary.

For each of the following models we will use a 10 fold grid search to find the
best hyperparameters, and then compare the accuracy of our best models to
choose the final result.

a. Model 1� KNN Classifier with k: [1, 200]

b. Model 2� Support Vector Machine Classification
c. Model 3� Logistic Regression

We will use f1-macro as our main tool to evaluate the models we produce.
In order to gain a deeper understanding of what our classifiers are doing we
will examine and interpret the confusion matrices of our top models.

3. Implementation

Note that the dataset has around 5,000,000 observations. When training our
models, we cannot possibly train it on the entire dataset, so we need to
sample smaller sections of the dataset. In the EDA, we found that the class
imbalance is really bad. So in the data sampling, we should try to minimize
the imbalance within our sample.

What we did was when we take, for example, a sample with 10,000
observations, we randomly sample 2,000 (10,000 / 5 severity levels)
observations of severity 1. Then 2,000 observations of severity 2, and so on. If
there are not enough observations of a certain severity level to meet this
quota, we just allow there to be some class imbalance (which is still a lot less
than without this method)



4. Results

Final Model Parameters: After running all of our grid searches, these are the
best parameters for our 3 models.

KNN SVM Logistic

n_neighbors = 36
p = 1 (manhattan)

C = 2.282
gamma = auto
kernel = rbf

C = 1.216
penalty = l1
solver = saga

Figure 1.4.1� Final Model Performances (run on full dataset: ~5mil observations)

Model: KNN SVM Logistic

Accuracy 0.3134 0.2645 0.3768

Lenient Accuracy 0.7604 0.7535 0.7922

F1 Score 0.3485 0.2608 0.4132

As we can see, the logistic regression model is better than the other two in
all of our metrics.

Note: Lenient Accuracy

For this classification, our different categories are not necessarily extremely
distinct. For example, severe injury and visible injury are pretty similar. So we
should maybe use a metric that, for an observation whose severity = death,
would penalize a prediction of ‘property damage only’ more than a prediction
of ‘severe injury’.

So, we created a metric, lenient accuracy, that for an observation that has a
severity of ‘death’, counts a prediction of ‘death’ as 1 correct prediction, a
prediction of ‘severe injury’ as 0.8 correct predictions, a prediction of ‘visible
injury’ as 0.6 correct predictions, etc. It sums these up and divides by the
total amount of predictions to report the final ‘lenient accuracy’



Figure 1.4� Confusion Matrix for Best Model: Logistic Regression

We can see that the diagonal has the highest values: our model is making
accurate predictions the majority of the time. However, the cells adjacent to
the diagonal also have pretty high values. This is because a collision that
results in property damage only is similar to one that results in only a
complaint of pain. This is the exact reason we created the lenient accuracy
metric.

Overall, this model does not make any outrageous predictions, the cells
completely off of the diagonal have low values. However, the accuracy, in the
grand scheme of things, is admittedly not ideal. Our speculation on why this
might be is that even if the conditions of the collision are exactly the same. A
100 year old passenger might die while a 20 year old might just get injured.
These models did not have access to this kind of passenger info, which may
explain why our confusion matrix’s diagonal is so ‘blurry’: a lot of predictions
slightly off of the diagonal.



Question 2 - Notebook

1. Analytical Question

“Classify and predict the likelihood of DUI-related collisions based on temporal
and environmental factors.”

This question aims to examine the factors that contribute most to
DUI-related accidents in California. The interest in this question comes from
the question of whether or not there are patterns involved in drunk driving,
or if the likelihood of alcohol being involved in a collision is uniform. The
results of this question aim to help provide more insight to when drunk
driving is more likely to occur, improving public safety by allowing highway
patrol to stop more potential crashes during high times for alcohol-related
collisions.

2. Design

For this question, we utilized the California Traffic Collision Raw SWITRS
Dataset, which is a dump of collision-related records from the California
Highway Patrol, specifically the 2021 June 4th dump. For this question, the
collision time, alcohol involvement, time of collision, date of collision (as a
calendar date), day of the week, type of weather, type of location (highway,
intersection, ramp), and type of ramp intersection (ramp exit, mid ramp,
ramp entry, etc.).

To prepare the data, in addition to filling in missing/removing missing
values, the month, day of month, year, hour, and minute were created as
separate columns from the aforementioned variables. A separate
measurement of hours, mapping times 12�00 AM to 6�00 AM to hours 24-30
was also created.

To solve the question, three models were created: a KNN classifier, logistic
regression, and SVM. These were put through GridSearchCV to select the
best set of hyperparameters (further discussed under Implementation), and

https://colab.research.google.com/drive/1hmOw1V7RPOhrFaGcx25bFU_O8DeOrUS4


for each grid search, a new model was made with the best hyperparameters
from the grid search that only took a selection of the original features as
input (the hour remapping, the day of week, the secondary weather
measurement, location type, and type of ramp intersection).

To evaluate each model, we used accuracy, precision, recall, and F1 score, but
the ultimate deciding factor was F1 score. This was because the data set was
imbalanced, so this would mitigate the problem of the models choosing the
same class every time.

3. Implementation

To train the model, a randomly generated selection of 2000 non-alcohol
collisions and 1000 alcohol involved collisions were combined to create a
training set. This was due to performance reasons as well as trying to offset
the severe imbalance that the full data set had, while still preserving some
element of imbalance to optimize F1 score.

Each of the models used in this question utilized one-hot encoding for
categorical features and standardization for numerical features. The
standardization was implemented in order to fix an error with the fitting of
one of the models, as well as to ensure that all variables could have an equal
contribution regardless of scale. In addition, the alcohol involvement variable
was converted to numeric values (N to 0 and Y to 1), which was stored in the
ALC column in the code.

For hyperparameter tuning, the KNN model used K values from 2 to 40 and
both Manhattan and Euclidean distance. For the logistic regression, C values
for every 0.2 between 0.5 and 2.9 were used (i.e. 0.5, 0.7, …, 2.7, 2.9), and the
solvers used were “liblinear” and “saga”. For the SVM model, the same
values as the logistic regression were used for C (0.5, 0.7, … 2.9), the
“linear”, “poly”, and “sigmoid” kernels were used, and the polynomial
degree ranged from 2 to 4.



4. Results

The following results were evaluated on the first 10000 rows of data after
cleaning (rows with NaN values were dropped)

Model Accuracy Score Precision Recall F1 Score

KNN with Euclidean
distance, K=19

0.845 0.657 0.307 0.419

Logistic Regression with
C=2.9, penalty=l1,
solver=saga

0.863 0.577 0.326 0.417

SVM with C=2.3,
degree=2,
kernel=poly

0.861 0.607 0.327 0.425

Table 2.4.1�Models with best hyperparameters, using all features

Model Accuracy Score Precision Recall F1 Score

KNN with Euclidean
distance, K=19

0.836 0.659 0.292 0.405

Logistic Regression with
C=2.9, penalty=l1,
solver=saga

0.862 0.581 0.325 0.417

SVM with C=2.3,
degree=2, kernel=poly

0.873 0.531 0.341 0.415

Table 2.4.2� Above models trained on a subset of the original features

The models all had decent accuracy on the testing data, however this is not
extremely significant given the imbalance of the testing set. For the other three
metrics, the models were not very effective, but the first SVM model (as shown in
2.4.1) trained on all of the features used in this question had the best F1 score. The
SVM model trained on the subset of features (as shown in 2.4.2) had a slightly lower
F1 score, but the highest accuracy of all six models. Ultimately, the first SVM model
is the best model based on the evaluation criteria (F1 score).



Question 3 - Notebook

1. Analytical Question

“Compare how the frequency and type of traffic collisions changed in California
and the most-prone collision locations over time?”

This question aims to analyze how often traffic collisions occur in California
and the types of collisions that happen most frequently, and how these
patterns have changed over the years, both in California overall and in
locations known for having a lot of accidents. This is interesting because it
helps us understand if driving habits, road conditions, or safety measures are
making a difference in reducing accidents. It's relevant for improving road
safety and preventing future collisions.

2. Design

For this analysis, we are using a dataset of traffic collision records in
California from 2009 to 2019. The dataset includes details like the date and
time of each collision, the type of collision, the road conditions, and the
location. We chose this time frame in this question to avoid inconsistencies
in 2020 data due to the COVID-19 pandemic.

Data Preparation:
1. We extracted year, month, date, time, and day of the week from the

columns COLLISION_DATE, COLLISION_TIME, DAY_OF_WEEK to
analyze trends over different time periods by creating a new column
called COLLISION_DATETIME with datetime objects.

2. We mapped day numbers to day names for better readability.
3. We filtered the data to focus on the years between 2009 and 2019.

Methods:
1. We used visualizations like bar charts and line graphs to illustrate the

trends in collision frequency and types over time.

https://colab.research.google.com/drive/1OILKW9CXmVKeXbDeGs_n7SZ8bkA9WCJ0?usp=sharing


2. We grouped the data by year, month, and collision type to calculate
the frequency of collisions and the percentage of each collision type.

3. We used the skforecast library to predict future collision counts
based on historical trends, evaluating and perfecting the model using
RMSE.

4. We identified the top collision locations by grouping collisions by
primary and secondary roads and counting the number of collisions at
each location, as well as analyzing the trend.

3. Implementation

To handle the large dataset efficiently, we leveraged Dask DataFrames instead
of Pandas. We read the CSV file into a Dask DataFrame using
dd.read_csv(), and only import certain columns using the usecols
attribute. We also handled missing values by setting the na_values
attribute. Only after the preprocessing of data did we convert the Dask
DataFrame back to Panda DataFrame using .compute().

In addition, to facilitate the analysis of trends over different time periods, we
created a temporary column called YearMonth. This column combines the
year and month information from the COLLISION_DATE column, allowing us
to easily group and analyze collision patterns by month and year.

Moreover, we investigated the most common PCF violation categories and
collision types for the top locations in each year to gain extra insights into
the factors contributing to collisions at these locations.

For visualizations, we used bar charts to visualize the frequency of collisions
by date, month, year, and type; and we used line graphs to illustrate the
percentage of collision types over time and the trend in collision frequency
for the top locations.



4. Results

Figure 3.1 - Frequency of Collisions by Month and Type (2009-2019)

Figure 3.2 - Frequency of Collisions by Year and Type (2009-2019)

We can notice that the trend of collision frequencies has been upwards
throughout the years of 2009 and 2019. From Figure 3,2, specifically, it
decreased from 2009 to 2013, but rose relatively dramatically from 2013 to
2016, and then gradually descended from 2016 onwards.



Figure 3.3 - Percentage of Collision Types Over Time

It is hard to analyze the percentage of collision types using the stacked bar
graphs above, so Figure 3.3 can help clarify a little bit. We can see that
“Sideswipes” are increasingly becoming more common among the types of
collisions, though only reaching around 22 percent. The majority of collisions
are “Rear Ends”.

Figure 3.4 - RMSE vs Number of Lags



We then try to predict the collision frequencies from 2020 onwards. (As
mentioned earlier, we analyze our data up to 2019 as COVID-19 led to
significant decrease in collisions due to stay-at-home policies. In a sense, we
are predicting the collision frequencies if COVID-19 did not happen).

Since we are using Time Series Forecasting, we want to find the best “lag”
value. In particular, the value of the lag denotes the past time interval we
want to use to predict the future. From Figure 3.4, we can see 31 lags returns
the lowest RMSE (863.5), indicating that using the prior 31 months is the best
model. Please also note that we used the most recent 24 months as testing (but
these 2 known years are still included in the training model, as the objective is
to predict unknown future data). Below in Figure 3.5, you can see the
comparison of our model prediction and the actual data, side-by-side.

Figure 3.5 - Collision Frequency Prediction of Most 2 Recent Months
(2018-2019)



Now it is time to predict the future, let’s say for the next 3 years!

Figure 3.6 - Collision Frequency Prediction of Future 3 Years (2020-2022)

It seems like, throughout the entire graph in Figure 3.6, that there is a clear
shape of how the collision frequencies vary over each year. Specifically, the
start of the year usually starts with a lower frequency, while the frequency
peaks at around November. What an interesting pattern!!!

Now let’s switch gears for a little bit.

Figure 3.7 - Top 10 Most Collision Prone Locations



From Figure 3.7, it is clear that the intersection around California State
Route 60 and Grand Avenue has a whopping high number of collisions
throughout the entire dataset. Let’s plot the collision frequency trend for
each of the 10 most collision prone locations, as shown below in Figure 3.8.

Figure 3.8 - Trend in Collision Frequency Over Time for Top 10 Locations

The right side of the graph looks off! There is no way that there are suddenly
no collisions in these locations. Let's see what happens if we try to find the
top location of collisions, rather than overall, but instead by year.

YEAR PRIMARY_RD SECONDARY_RD COUNT

2009 RT 60 GRAND AV 325

2010 RT 60 GRAND AV 349

2011 RT 60 GRAND AV 353



2012 RT 60 GRAND AV 343

2013 RT 60 GRAND AV 377

2014 RT 60 GRAND AV 371

2015 RT 15 RT 138 230

2016 SR-60 W/B (POMONA FREEWAY) GRAND AVE 283

2017 SR-60 W/B (POMONA FWY) GRAND AVE 202

2018 SR-60 W/B (POMONA FWY) GRAND AVE 205

2019 SR-60 W/B (POMONA FWY) GRAND AVE 223

Table 3.9 - Top Accident-Prone Location by Year

Now we realize that the format of the data has simply changed (phew!).
Specifically, the location (RT 60, GRAND AV) has changed to (SR-60 W/B

(POMONA FWY), GRAND AVE). However, we can see that the most
accident-prone location (except 2015) is still that same intersection around
California State Route 60 and Grand Avenue.

We found the location on Google Maps, and it is suspected that the collisions
are most likely resulting from the poor highway design, where two highways
have to completely merge together before splitting again. To further
understand this phenomenon, we found that the top PCF Violation and
collision type among all the above collisions are “Unsafe Speed” and “Rear
End” respectively.

As discovered in an recent article about a road change in the area, the
location is indicated as the ‘worst truck bottleneck’ in the nation, where
congestion (hence, collisions!) frequently occurs. This suggests that the
Federal Highway Administration should improve the road design of the
surrounding areas around California State Route 60 and its exit of Grand
Avenue.

https://www.google.com/maps/place/CA-57+%26+CA-60,+Diamond+Bar,+CA+91765/@34.0217966,-117.8430033,13.6z/data=!4m7!3m6!1s0x80c32c6f37c9c655:0x56f0c8438808cad1!8m2!3d34.0207511!4d-117.8146286!15sCi5zdGF0ZSByb3V0ZSA1NyBhbmQgc3RhdGUgcm91dGUgNjAgaW50ZXJzZWN0aW9ukgEMaW50ZXJzZWN0aW9u4AEA!16s%2Fg%2F11hb2zlgwj?coh=219816&entry=tts&g_ep=EgoyMDI0MDgxNC4xKgBIAVAD
https://www.diamondbarca.gov/966/SR-57-SR-60-Interchange-Improvement


Question 4 - Notebook

1. Analytical Question

“How do the start and end of Daylight Saving Time (DST) affect the likelihood of
traffic collisions in California, and can we classify these periods based on
collision data (post-DST start, post-DST end, normal time)?”

This question aims to explore the impact of the start and end of Daylight
Saving Time (DST) on the likelihood of traffic collisions in California. The
interest lies in understanding whether the time shifts associated with
DST—specifically, the loss or gain of an hour—affect driving behavior,
potentially leading to an increased number of collisions. This analysis is
particularly important for public safety and policy-making, as it could inform
decisions on whether DST should be modified or maintained, based on its
effects on road safety. The goal is to classify traffic collisions into three
categories: post-DST start, post-DST end, and normal time, to identify if
there are distinguishable patterns in collision data that correlate with these
periods.

2. Design

To address this question, we utilized the California Traffic Collision Raw
SWITRS Dataset, which includes detailed records of traffic collisions across
the state. The key variables selected for analysis were Collision Date,
Collision Time, Vehicle Type, Road Surface Conditions, Weather Conditions,
Lighting, and Control Device.

Data Preparation
1. A new categorical variable, DST_PERIOD, was engineered to categorize

each collision into one of three classes: post-DST start, post-DST end,
or normal time. This was based on the Collision Date.

2. The dataset was initially found to be highly imbalanced, with a
significantly larger number of collisions classified as occurring during
the "normal" time period. To ensure a more balanced and effective

https://colab.research.google.com/drive/1iQoLGNG1oyOISKL3Bx_cg23_paf_ra5R?usp=sharing


analysis, the data was reduced, particularly by undersampling the
"normal" category, to create a more even distribution across all three
DST periods.

3. The target variable was DST_PERIOD, and the features included both
categorical and numerical variables related to the conditions
surrounding each collision.

Three models were employed:
1. Logistic Regression: A baseline model was developed using Logistic

Regression to classify collisions into the three DST periods. The
OneHotEncoder and StandardScaler transformations were applied to
the features through a column transformer. The Logistic Regression
model was then integrated into a pipeline, which handled both
preprocessing and model training in a single flow.

2. Random Forest Classifier: Captures potential non-linear relationships
and interactions between the features. It is similar to the Logistic
Regression model because the Random Forest Classifier was also
encapsulated within a pipeline with the same preprocessing steps.

3. Support Vector Machine (SVM): The SVM model was used to explore
the separability of the DST periods in a high-dimensional feature
space. An SVM pipeline was created with the rbf kernel to manage
complex decision boundaries between the classes.

Each model was incorporated into a pipeline, which included preprocessing
steps like One-Hot Encoding for categorical features and Standard Scaling
for numerical features. Hyperparameter tuning was conducted using
GridSearchCV with a 5-fold cross-validation.

3. Implementation

The implementation phase involved executing the technical design through
the following steps:

Preprocessing Pipelines:
● Categorical Features: OneHotEncoder was applied to categorical

variables (COLLISION_SEVERITY, WEATHER_1, ROAD_SURFACE,



LIGHTING, and CONTROL_DEVICE) to convert them into a format
suitable for model input.

● Numerical Features: StandardScaler was used to normalize HOUR and
DAY_OF_WEEK, ensuring that all features contributed equally to the
model.

Model Development:
● Logistic Regression Pipeline: This pipeline integrated the

preprocessing steps with the Logistic Regression model. The ovr
(one-vs-rest) strategy was applied to handle the multi-class
classification problem.

● Random Forest Pipeline: Included the same preprocessing steps,
followed by the Random Forest model to capture complex interactions
between features.

● SVM Pipeline: Used the rbf kernel to manage non-linear decision
boundaries, critical for accurately classifying the DST periods.

Hyperparameter Tuning:
● Logistic Regression: Parameters such as C, penalty, and solver

were tuned.
● Random Forest: Parameters like n_estimators, max_depth, and

min_samples_split were optimized.
● SVM: The C and kernel parameters were adjusted for optimal

performance.

Evaluation:
● Each model’s performance was evaluated on a holdout test set using

accuracy, precision, recall, and F1-score. Confusion matrices were
generated to provide a visual breakdown of the models’ predictions.

4. Results:
The results from the three models are summarized below:

1. Logistic Regression:
● Best Parameters: C=0.01, penalty='l1', solver='saga'

● Best Cross-Validation Accuracy: 0.6853
● Test Accuracy: 0.6822



● Precision: 0.7072
● Recall: 0.6822
● F1-Score: 0.6826
● Confusion Matrix:

2. Random Forest Classifier:
● Best Parameters: n_estimators=200, max_depth=15,

min_samples_split=5

● Best Cross-Validation Accuracy: 0.7147
● Test Accuracy: 0.7143
● Precision: 0.7331
● Recall: 0.7143
● F1-Score: 0.7207
● Confusion Matrix:



3. Support Vector Machine (SVM):
● Best Parameters: C=1, kernel='rbf'

● Best Cross-Validation Accuracy: 0.6984
● Test Accuracy: 0.6931
● Precision: 0.7127
● Recall: 0.6931
● F1-Score: 0.6995
● Confusion Matrix:

The models indicate a higher likelihood of collisions in Post-DST Start,
which aligns with the hypothesis that the shift in time, particularly the
loss of an hour, may lead to increased driver fatigue and changes in
morning light conditions. These factors could contribute to a higher
incidence of collisions. The confusion matrices provide a visual breakdown of
how well each model performed across the different DST periods, with the
Random Forest model achieving the highest accuracy and F1-score. This
model shows a better balance between precision and recall, especially for the
POST_DST_END and POST_DST_START categories.



Discussion and Conclusions
The common theme across our project was analyzing and predicting traffic
collision dynamics in California based on various temporal, environmental, and
human factors. Each question we explored on a different aspect, such as the role of
alcohol and Daylight Saving Time or the influence of weather and road conditions
on collision severity, and more.

We were able to gather many insights from the data. For instance, we found that
the likelihood of alcohol-related collisions was significantly influenced by the time
of day and day of the week, with higher frequencies observed during late hours and
weekends. Similarly, the start and end of Daylight Saving Time were associated with
noticeable shifts in collision patterns, suggesting that the time change may impact
driver behavior and collision risk.

Moreover, the analysis of collision severity revealed the complexity of predicting
future outcomes based on past data. While our models achieved moderate
accuracy, the difficulty in distinguishing between different severity levels highlights
the need for better data analyzing and modeling techniques. Nevertheless, the
Random Forest and SVM models usually performed better in capturing non-linear
relationships between features, but there is still room for improvement.

All in all, our project demonstrates the potential of understanding past traffic
collisions and informing public safety initiatives through the power of data science.
For example, we can inform targeted interventions and appropriate resource
allocation by local and state authorities. Ultimately, it would hopefully lead to the
implementation of more effective safety measures, ultimately reducing collision
rates and saving lives.


